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S Motivation:
1 Plasmaand Related Technologies

0 awake up call: energy crisisin early 1970s led to first
low-emissivity coatings (e.g. thin gold films)

0 development of (static) low-E and solar control: stack
with Ag films and antireflection coatings

0 1n 1980s: first small-area switchable (dynamic) devices

o no quick development to commercial windows: technical
difficulties and related costs were underestimated

0 In 1980-90s. important Improvements in sputtering,
plasma technology and diagnostics,materials
characterization, process controls, computer simulation

0 late 1990s:; explosive growth of nanotechnol ogy
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Surface and Coatings Engineering

mm}J with Plasmas
0 Advantages of plasmas in processing:

[

[

[

IN-situ etching (cleaning) of substrate

activation of film-forming species |ead to enhanced control of
stoichiometric composition

Kinetic energy of ions can be enhanced and controlled by
applied potentials (energetic condensation): denser films

potential energy of condensing species is enhanced: local
heating, smoother films

many free process parameters

0 Disadvantages:
o Vacuum process. high cost

[
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relatively complicated, not always understood
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¢ Plasma Coating on Glass:

TheVery First Steps

0 Discharges and Plasmas made as soon as energy
storage was invented (1743):

|
o

A. Anders, IEEE Trans. Plasma Sci. 31 (2003) August issue, in print.
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Plasma Coating on Glass:

TheVery First Steps

1 Priestley 1766: first
cathodic arc coatings
of oxides on glass

S
o Flanbe 44 of e

A. Anders, IEEE Trans. Plasma Sci. 31 (2003) August issue, in print.
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Development of Sputtering

0 Diode Sputtering
o observed as early as in
& Dt < Jig. 1190, 1850s |
- | o actually: pulsed diode
sputtering
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’311\] Development of Sputtering

Magnetron sputtering: Enhancement of the plasma
density at the target by a magnetic field,;

Unbalanced magnetron sputtering: the magnetic field
lines are not closed at the target, thus flow to the
substrate is enhanced,;

Reactive sputtering: use of reactive gas in sputter gas
mixture, deposition of compound films;

RF sputtering: insulating targets can be used,;

Dual or twin magnetron sputtering: Two targets
working with alternating current, often at medium
frequency, the problem of the “disappearing anode” is
solved
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Dual or twin magnetron sputtering: Two targets
working with alternating current (AC), often at medium
frequency (MF), the problem of the “disappearing anode”

IS solved

Hollow-cathode gas flow sputtering: The to be
sputtered material has hollow cathode shape, sputter
gas flows through it and facilitates transport of material
to substrate

lonized sputtering (i-PVD): Additional plasma
lonization, usually by RF-fields between magnetron and
substrate

pulsed sputtering, especially high power pulsed
magnetron sputtering (HPPMS): Power to magnetron
IS pulsed at a level > 100 x usual power
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’3:1\] Development of Sputtering

0 Rotating magnetron sputtering, often with
cylindrical cathodes: target utilization is greatly
Improved,

0 High-Pulsed power magnetron sputtering: During
pulses, the current (hence power) is increased by
orders of magnitude; the degree of ionization and
particle energy can be greatly enhanced.
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’1\) Pulsed Sputtering

0 Proposed by Kouznetsov and co-workersin late 1990s
0 use of traditional sputter magnetron

0 Increase power during pulses by > 2 orders of
magnitude

0 average power iswithin acceptable level by using low
duty cycle

0 observe increased degree of ionization
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A Voltage-Current Waveform for

Pulsed Sputtering
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V. Kouznetsov, et al., Surf. Coat. Technol. 122, 290-293 (1999)
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e Y Self-Sustained Self-Sputtering

— 1
lon acceleration In
target sheath
y / Condition of
Self-Sustaining
sputtering Self-Sputtering
from target apfy>1

to substrate
(atoms)
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thermalization
by collisions
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"‘11\1 Self-Sputter Yield

PEAKELEY LAS

Self-sputtering yield (atoms/ion)

Energy of primary ions (eV)
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Monte Carlo
Simulations

Carbon cannot go in
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self-sputtering



e j Closing the Feedback L oop

generic, but not trivial:

\

make adjustments
during processing
Deposition - l Coating
Process 3 properties
add Film add
plasma, bias, structure IN-situ
diagnostics characterization
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Thorton Zone Diagram

i
J. A. Thornton, J. Vac. .
Technol. 11, 666, 1974
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’1\) Film Growth and Properties

0 Growth Modes. Layer-by-Layer versus |slands

0 Equilibrium: Substrate material and temperature
determines growth

0 when Kinetic factors included: growth can occur
far from thermodynamic equilibrium

0 examples for kinetically driven deposition
(“energetic condensation”):
1 i-PVD, HPPMS
n filtered cathodic arc deposition
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g Energetic Relation Between
m;;:,\] | mplantation and Deposition Processes

Film growth is still possible for

|mplantation _
low duty cycle of bias
>
@)
g «— | sputter yield = 1 for E=300-1200 eV
LLI
- lon plating, MePI11D
o Subplantation _ )
cathodic arc deposition
- sputtering
Deposition _
evaporation
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g Effect of self-lon bombardment

mm;\]_ on film microstructure
0 Dengification of Ti film by Ti ions (self-1on assistance)
at room temperature lTi (without ions)

Ti" (50 eV) --> Ti film

1.0

AVERAGE DENSITY
o
©
Ll

1 1 i 1 1

0 0.2 0.4 ; %
ION-TO-ATOM ARRIVAL RATE RATIO Martin et a. JVST 5 (1987) 22
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A\I . Example: Energetic Condensation
=il Using Filtered CathodicArcs

streaming, clean
metal plasma

e taC

e metal films
e.g. Agfilms

e compounds
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¢ Coalescence and Post-Deposition
Dynamics of Ultrathin Silver Film

90° filter coil

silver pad
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”ﬁ‘l Deposition of Ultrathin Silver Films

[DEAKELEY Las
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om ; Post-Deposition Dynamics
- |
0 thermodynamic forces may can lead to diffusion and
rearrangement,

0 lowering the total energy of system, including
o film atom - substrate atom interaction energy
o film atom - film atom interaction energy
o strain energy

0 thermodynamic forces are the stronger the further
the system is from thermodynamic equilibrium

0 higher temperature promotes system to move to
equilibrium
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’3:1\] Post-Deposition Dynamics
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e . Coalescence

BEAKELEY LAS

0 thermal motion and
Island growth by
continued deposition
lead to coal escence

[#]

coalesence.gif

courtesy of C. Nelson, National
Center for Electron Microscopy,

Berkeley, 2003. s o
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Sculptured Films: Principle

Atom Flux Atom Flux

—

+ 3
. >
non-chiral sculptures <- :
(can be made compatible with large- _
area coating) chiral sculptures
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O. R. Monteiro, et al., J. Phys. D: Appl. Phys. 31, 3188 (1998)
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o Sculptured Films: Helicoidal
ﬂ Bianisotropic Thin Films

10-turn chiral SIO, sample made by Paul Sundahl, Penn State University
(see aso web page of Dr. Akhlesh Lakhtakia and Dr. Russell Messier, Penn State)
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1 films show optic '

al tivity with nematic liquid rystal S. dermi ne/
change transmission of polarized light
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1 Transparent Electronics
erorererer

TCO (transparent conductive oxides)

4/\

e optical coating o“ active” transparent
“ passive’ coatings electronics
or

e used in low and high-tech: “Invisible” electronics
solar control coatings
eantistatic coatings sused in high-tech, e.q.:
stouch display panels *AMLCD (active
esolar cells matrix liquid crystal
*heaters, defrosters display)
*RF shields
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’f\ﬂ Transparent Electronics

e n- and p-type material needed IMIR]S
demonstrated e.g. for ZnO BULLETI

» wide band-gap: to be transparent | e

« higher conductivity should be ', g:igﬁezﬂrent Conducting

obtained by enhanced mobility thus
purer material with lessgrain
boundaries

e great collection of papers. MRS
Bull. 25 no 8 (2000)

o if both n and p-type avallable, and
suitable band structure, light can be
emitted or “harvested”
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/3:1\] Windows Har vesting Solar Energy?

0 aprinc p_al Issue: high transmittance — alarge portion of solar
energy cannot be harvested

0 Isit more likely that facade elements other than windows are used

for harvesting solar energy

o UV visible near-infrared

HOWeVer, there | S hope %‘* W Solar Energy Distribution

e \Windows need to transmit E o8 5% ultraviolet (300-400 nm)
only < 25% when sun T s 52% o nhared 100.2500 i
brightest 2

e window doesnot needto g o

be transparent when roomis

not occupied £ 02

- if materialsand process % /\_NVH_
economical, harvesting of 250 500 750 1000 1250 1500 1750 2000 2250 2500

Wavelength (nanometers)
RERMEL Y LA

the IR may be useful
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Windows as Areal Lightsand Displays ?

* TFET (transparent field effect transistor) |05 layer [ RETRTOTOTONN
e single-crystalline material: very GaO(ZnD)E[

high mobility demonstrated block

e fabrication: PLD with annealing,
hence currently not suitable for
large areas.

1.9nm

K. Nomuraet al., Science 300 (2003) 1269

 even If technology i1ssues resolved:
cost issues remain!
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/3\1\] Summary, Main Conclusions

0 Plasma coating on glass is technology older than
usually presumed

0 Family of sputtering technologies has matured but
developmentsis still very much underway, for example
In MF dual magnetron sputtering and pulsed sputtering

0 Process and Materials examples:.

o low-E coatings with Ag film: there are thermodynamic and
Kinetic factors, important for post-deposition dynamics

o sculptured thin films as nanostructured coatings

n ZnO as TCO aswell as active coating for devicesin
“transparent electronics’
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